
OR I G I N A L A R T I C L E

Defensive spines are associated with large geographic range
but not diversification in spiny ants (Hymenoptera: Formicidae:
Polyrhachis)

Benjamin D. Blanchard1 | Corrie S. Moreau2,3

1CAS Key Laboratory of Tropical Forest

Ecology, Xishuangbanna Tropical Botanical

Garden, Chinese Academy of Sciences,

Menglun, Yunnan, China

2Department of Entomology, Cornell

University, Ithaca, New York, USA

3Department of Ecology and Evolutionary

Biology, Cornell University, Ithaca, New

York, USA

Correspondence

Benjamin D. Blanchard, CAS Key Laboratory

of Tropical Forest Ecology, Xishuangbanna

Tropical Botanical Garden, Chinese Academy

of Sciences, Menglun, Mengla, Yunnan

666303, China.

Email: bdblanchard@outlook.com

Funding information

Chinese Academy of Sciences, Grant/Award

Number: 2021PB0085; Division of

Environmental Biology, Grant/Award

Numbers: DEB-1701352, DEB-1900357;

Division of Integrative Organismal Systems,

Grant/Award Number: IOS-1916995; Field

Museum, Grant/Award Number: Brown

Graduate Fellowship; University of Chicago,

Grant/Award Number: Henry Hinds Fund

Abstract

Several prominent evolutionary theories propose mechanisms whereby the evolution of a

defensive trait or suite of traits causes significant shifts in species diversification rate and

niche evolution. We investigate the role of cuticular spines, a highly variable morphological

defensive trait in the hyperdiverse ant genus Polyrhachis, on species diversification and geo-

graphic range size. Informed by key innovation theory and the escape-and-radiate hypothe-

sis, we predicted that clades with longer spines would exhibit elevated rates of

diversification and larger range sizes compared to clades with shorter spines. To address

these predictions, we estimated phylogenetic relationships with a phylogenomic approach

utilizing ultraconserved elements and compiled morphological and biogeographic trait data-

bases. In contrast to the first prediction, we found no association between diversification

rate and any trait (spine length, body size and range size), with the sole exception of a posi-

tive association between range size and diversification in one of three trait-based diversifi-

cation analyses. However, we recovered a positive phylogenetic correlation between spine

length and geographic range size, suggesting that spines promote expanded geographic

range. Notably, these results were consistent across analyses using different phylogenetic

inference approaches and spine trait measurement schemes. This study provides a rare

investigation of the role of a defensive trait on geographic range size, and ultimately sup-

ports the hypothesis that defensive spines are a factor in increased range size in Polyrhachis

ants. Furthermore, the lack of support for an association between spines and diversification,

which contrasts with previous work demonstrating a positive association between spines

and diversification rate, is intriguing and warrants further study.
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INTRODUCTION

Defensive traits can play a key role in the evolution of a clade, pro-

moting coevolutionary dynamics with predators (Brodersen

et al., 2018; Edger et al., 2015), geographic range size contractions or

expansions (Luiz et al., 2013; Siemens et al., 2009), niche specializa-

tion (Darst et al., 2005) and morphological divergence (Kursar

et al., 2009; Vamosi & Schluter, 2004). Prominent evolutionary theo-

ries propose putative mechanisms whereby the evolution of a defen-

sive trait or suite of traits results in significant shifts in species

diversification rate and niche evolution. One such theory proposes

that the evolution of a ‘key innovation’ drives subsequent significant
increases in diversification rates (Mayr, 1960), for example, the associ-

ation between the evolution of extrafloral nectaries, an ant-mediated
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defence and elevated diversification in vascular plants (Weber &

Agrawal, 2014). Similarly, the escape-and-radiate hypothesis proposes

that escape from predators, deriving from the evolution of some

defensive trait, drives cycles of diversification (Ehrlich & Raven, 1964).

While the plant-butterfly herbivore system is the paradigmatic test

case for this hypothesis (Suchan & Alvarez, 2015), Arbuckle and Speed

(2015) find support for elevated speciation rates in frog clades that

utilize aposematic coloration. Evaluating the influence of morphologi-

cal defensive traits on macroevolutionary dynamics typically requires

robust phylogenetic information and a clade that is diverse enough to

include many phylogenetically independent evolutionary shifts in the

traits of interest (Maddison & Fitz John, 2015).

The spiny ant genus Polyrhachis, a hyperdiverse clade of

700 described species and 82 valid subspecies (Bolton, 2020) with a

broad geographic range spanning from western Africa to Melanesia,

exhibits remarkable interspecific variation in cuticular spine morphology.

Spine trait states range from entirely absent to extreme lengths exceed-

ing that of the thorax (Figure 1), while species exhibit minimal intraspe-

cific variation within the monomorphic worker caste. Recent work has

established that such spines are likely adaptive defences against verte-

brate and invertebrate predation (Blanchard et al., 2020; Ito et al., 2016;

Pekár et al., 2017), with one study finding support for a muscle storage

function of pronotal spines in the hyperdiverse ant genus Pheidole

(Sarnat et al., 2017). Furthermore, a broad investigation across all ants

found that spines are highly evolutionary labile and associated with ele-

vated diversification rates (Blanchard & Moreau, 2017). Polyrhachis spe-

cies also vary wildly in their geographic range even within the same

subgenus, with some species restricted to one locality while others are

distributed across much of the Oriental and Australasian regions

(AntMaps.org; Guénard et al., 2017; Janicki et al., 2016). This insect

genus is thus ideal for probing the relationship between a variable defen-

sive trait and species diversification as well as geographic range size.

Ant phylogenetics has expanded into the field of phylogenomics

through the use of RADseq (Fischer et al., 2015; Moreau &

Wray, 2017), genotyping by sequencing (Winston et al., 2017), tran-

scriptomics (Johnson et al., 2013) and, most recently, ultraconserved

elements (UCEs; Branstetter, Longino, et al., 2017; Faircloth

et al., 2012; Zhang et al., 2019). The use of UCEs has proven fruitful

F I GU R E 1 Morphological variation in the ant genus Polyrhachis. Species (and photo credit), from top left: P. boltoni (Michael Esposito),
P. robsoni (Will Ericson), P. deceptor (April Noble), P. loweryi (Will Ericson), P. ornata (Michele Esposito), P. lata (Cerise Chen), P. hippomanes (April
Noble), P. armata (Estella Ortega) and P. ypsilon (Estella Ortega). Images from www.antweb.org under a Creative Commons attribution licence
(accessed 13 June 2019). Figure reproduced from Blanchard et al. (2020) under a Creative Commons CC BY licence.
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in ants and other animal groups, contributing to the phylogenetic res-

olution of Hymenoptera (Branstetter, Danforth, et al., 2017), Formici-

dae (Branstetter, Longino, et al., 2017), and major ant lineages like

Formicinae (Blaimer et al., 2015) and fungus-farming ants

(Branstetter, Ješovnik, et al., 2017; Ješovnik et al., 2017), in addition

to weevils (Van Dam et al., 2017), placental mammals (McCormack

et al., 2012), ray-finned fishes (Faircloth et al., 2013), turtles

(Crawford et al., 2015) and several other taxa (Zhang et al., 2019).

Here, we leverage the UCE sequencing approach to significantly

expand the current phylogenetic coverage of Polyrhachis (Mezger &

Moreau, 2016) and compile a dataset including spine length, body

size, and range size information. With these data, we explore the

impact of spine length evolution on species diversification and geo-

graphic range size while also accounting for body size, with a focus on

expectations of defensive trait-based theories such as the escape-

and-radiate hypothesis. In particular, we predicted that spines would

be associated with both elevated diversification rates and expanded

geographic range size, as expected if spines serve as defensive mecha-

nisms that reduce extinction rates and promote spatial niche expan-

sion due to a reduction of worker loss from predation.

MATERIALS AND METHODS

Taxon sampling

Our dataset for UCE sequencing includes 161 samples from 160 spe-

cies, representing 12 of the 13 recognized subgenera and spanning

the geographic range of the genus (sequencing failed for the represen-

tative of the species-poor P. [Hirtomyrma] subgenus; Table S1). We

obtained samples from specimens collected for a previous study

(Mezger & Moreau, 2016), gifts and loans from collaborators and the

personal collections of authors of this study (B.D.B. and C.S.M.). Spe-

cies were determined by B.D.B. using primary literature

(Kohout, 2010; Kohout, 2014; Rigato, 2016), existing designations

from Mezger and Moreau (2016) and information and images available

on AntWiki (antwiki.org; accessed September 2018) and AntWeb

(antweb.org; accessed September 2018). Any specimens identified to

subspecies were treated as the parent species. See Table S2 for avail-

able collection information for each sample as well as voucher identity

and depository location.

UCE sequencing workflow and bioinformatics

We conducted DNA extraction using the Qiagen DNEasy Blood and

Tissue Kit (Qiagen Inc., Valencia, CA, USA) following the protocol of

Moreau (2014). After this step, library preparation, sample pooling,

UCE enrichment (Hymenoptera version 2 ‘ant specific’ bait set target-
ing 2524 UCE loci; Branstetter, Longino, et al., 2017), enrichment veri-

fication, final pooling and Illumina sequencing followed the protocols

described in Faircloth et al. (2015) (Appendix S1). All steps except Illu-

mina sequencing were conducted in the Field Museum Pritzker

Laboratory, after which sample pools were sent to the University of

Oregon GC3F iLab for Illumina sequencing on an Illumina HiSeq 4000

(150 bp paired-end reads; Illumina Inc., San Diego, CA, USA; see

Table S2 for NCBI accession numbers associated with raw demulti-

plexed sequences generated for this study). For a few samples from a

previous study (Mezger & Moreau, 2016), extracted DNA was already

available, and thus we skipped the extraction step. We selected

15 taxa to use as outgroups from a previous phylogenomic study that

utilized an earlier probe set targeting 1510 UCE loci (Blaimer

et al., 2015; Faircloth et al., 2015; Table S1), downloaded FASTQ files

of trimmed reads through the Sequence Read Archive (Leinonen

et al., 2011), and used these data in subsequent steps. All processing

steps, from cleaning to alignment, were conducted using PHYLUCE

v1.6.6 (Faircloth, 2016) on the University of Chicago Research Com-

puting Center Midway2 computing cluster (see Appendix S1).

Phylogenomic analyses of 70% taxon complete matrix

Using the 70%-taxon-complete dataset, we inferred phylogenetic tree

topologies through maximum likelihood (ML), Bayesian inference

(BI) and gene-tree (GT) methods. For the ML analysis, we conducted

inferences using RAxML-HPC BlackBox (Stamatakis, 2014) on the

CIPRES computing cluster (Miller et al., 2010), enabling the AutoMRE

function to allow the program to automatically determine sufficient

bootstrapping number. We also designated all 15 outgroup taxa as

outgroups, without constraining outgroup topology a priori, in the

RAxML analysis. We conducted ML analyses using three partitioning

schemes on the concatenated dataset: unpartitioned, locus-

partitioned (partitioned by UCE locus) and rclusterf-partitioned using

PartitionFinder2 with UCE loci as input data blocks (475 partitions;

Lanfear et al., 2017). We used the GTR+ Γ model of molecular evolu-

tion for all inferences including the rclusterf-partitioned analysis. The

rclusterf partitioning scheme was favoured by Akaike information cri-

terion (AICc) analysis, thus we used the rclusterf-partitioned RAxML

tree for downstream analyses.

For the BI analyses, we conducted an inference using the

rclusterf-partitioned matrix in ExaBayes v1.5 (Aberer et al., 2014) on

the CIPRES computing cluster. We conducted two runs with 1 million

generations, a checkpoint interval of 10,000, four coupled chains and

a 10% burn-in, with all other settings left at the default. We confirmed

convergence and adequate effective sample size (ESS) values of both

runs combined using Tracer v1.7.1 (Rambaut et al., 2018). We also

enabled the ‘consense’ function to produce an output consensus tree

with a threshold of 50% and a burn-in of 10%.

We conducted GT analyses using IQ-TREE v1.6.12 (Nguyen

et al., 2015) and ASTRAL-III v5.6.3 (Zhang et al., 2018) on the Mid-

way2 computing cluster. We implemented fast ML inferences in IQ-

TREE for each UCE locus, utilizing the default ‘ModelFinder’ function
that automatically selects the substitution model and including 1000

bootstraps, and exported the inferred tree, with labelled bootstrap

support, for each locus. Previous work has shown that statistically bin-

ning loci into clusters can reduce error from loci with low information

SPINES ASSOCIATED WITH LARGE RANGE SIZE IN ANTS 3
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content (Branstetter, Danforth, et al., 2017), and thus we implemen-

ted the statistical binning pipeline (Mirarab et al., 2014). However, the

binning method failed to bin genes together, even with a threshold

set to 90%, due to the presence of highly supported conflicts

(S. Mirarab, personal communication), so we proceeded without bin-

ning UCE loci. We ran ASTRAL-III on our ML tree set using local pos-

terior probability to assess node support, after collapsing branches

with <10% support to improve accuracy (Zhang et al., 2017) using

Newick Utilities v1.6 (Junier & Zdobnov, 2010).

Divergence dating

We implemented divergence dating analyses using our rclusterf-

partitioned RAxML tree in MCMCTree, which is part of PAML v4.9 e

(Yang, 2007), as well as BEAST2 (Bouckaert et al., 2019). We chose the

RAxML topology (which is identical to the ExaBayes topology) as input,

because the ASTRAL-III topology included a highly unusual placement for

an in-group taxon (see Results). Due to current computational limitations,

phylogenomic studies are limited to a small subset of the entire available

data matrix when conducting divergence dating in BEAST2 (Bouckaert

et al., 2019). We chose MCMCTree as an alternative because it is a more

efficient program and also now has a sister R package, MCMCtreeR

(Puttick, 2019), for setting and visualizing intuitive node priors, a former

limitation. Furthermore, we used the ‘approximate likelihood’ method in

MCMCTree to calculate the likelihood function during MCMC iteration

(Reis & Yang, 2011), allowing the use of all 1300 UCE loci in our 70%

taxon-complete dataset. For our BEAST2 runs, we used two different

subsets of 100 UCE loci in our UCE dataset: ‘100-Random’ (100 random

loci) and ‘100-BEST’ (100 loci with highest gene tree bootstrap support).

Due to a lack of informative fossils for this group (the only fossil species

Polyrhachis annosa is from a Late Miocene deposit much younger than

both crown Polyrhachis and the subgenus to which it is tentatively

assigned, P. [Myrmatopa]; Wappler et al., 2009), we set node age priors

on outgroup nodes and the Polyrhachis crown node based on means and

confidence intervals from previous phylogenetic studies (Table S3; see

Results for some more details about outgroup noncongruence with previ-

ous studies). See Appendix S1 for further details and parameter settings

implemented for our MCMCTree and BEAST2 inferences.

We used the posterior tree with RAxML-inferred topology and

mean node ages from the 95% height posterior density (HPD) distri-

bution inferred in MCMCTree for downstream macroevolutionary

analyses. From the BEAST2 runs, as the 100-BEST and

100-RANDOM dataset analyses inferred extremely similar divergence

dates (see Results) and the 100-BEST runs produced generally higher

ESS values, we used only the 100-BEST MCC tree from the combined

three independent runs for downstream macroevolutionary analyses.

Trait database

We collected morphological and geographic range trait data for the

160 Polyrhachis species included in our dated MCMCTree and

BEAST2 phylogenies. To obtain linear measurements of worker body

size and total spine length, we downloaded up to three available

image sets from AntWeb (antweb.org; accessed December 2019) and

AntWiki (antwiki.org; accessed December 2019), where each image

set includes one lateral view and one dorsal view for a sample. Images

were available for nearly all species, including 81 species (50.6%) with

three image sets or more, 46 species (28.8%) with two image sets and

27 species (16.9%) with 1 image set, while only 6 species (3.8%) had

no image sets available. From these images, we conducted linear mea-

surements in ImageJ v2.0.0 (Rueden et al., 2017; Schindelin

et al., 2012). To capture the body size metric, we used Weber’s length,

a standard proxy metric of body size used in ants (diagonal length of

the mesosoma in lateral view; Figure S1). To capture total spine length

(spine length), as we were interested in overall tissue investment in

spine production, we measured the linear distance in millimetres from

the base of a spine to the tip, for one of each pair of spines present

on the pronotum, mesonotum, propodeum and petiole, and summed

these values together. For each spine in a sample, we used the image

orientation (lateral or dorsal) that was most parallel to the plane of

projection of the spine. For a few cases, a singular spine—or spine

triplet—was present (e.g. in P. [Myrmothrinax] spp.) rather than a typi-

cal pair of spines. In this situation, we included half the length of the

solitary spine in our total spine length measurement (Table S1) in

order to correspond to our measurement of spine pairs, which only

includes one (i.e., 50%) of the total spine production for that pair. For

curved spines, we used the ‘segmented line’ tool to measure linear

length along the curvature of the spine. See Figure S1 for examples of

different spine measurements. As an alternative metric of spines, we

created a max spine length variable generated by using only the single

longest spine measurement on any segment out of all measurements

of the pronotal, mesonatal, propodeal and petiolar spines for each

species. We also used relative spine length and relative max spine length

(spine length/body size and max spine length/body size, respectively) for

some analyses. Measurements for species with multiple image sets

were averaged together.

We collected geographic range data from two sources. We used

AntMaps.org (Guénard et al., 2017; Janicki et al., 2016), an online

database of ant distribution records, to record presence/absence of

each of the 160 species in our dataset within three large biogeo-

graphic categories, Afrotropical, Oriental and Australasian (Lomolino

et al., 2005; Mezger & Moreau, 2016), using Wallace’s line

(Wallace, 1863) to separate Oriental from Australasian. For a more

fine-grained dataset, we utilized the recently published global ant dis-

tribution data of Kass et al. (2022), extracting geographic ranges in TIF

file format derived from either polygons based on alpha hulls or buff-

ered points (depending on number of collections available; see Kass

et al., 2022, for more details). We imported each TIF file into QGIS

v3.22.10 (QGIS.org, 2020), implemented the Polygonize function with

default settings to convert the raster into a polygon, calculated the

total spatial area in square metres using the area function in the attri-

bute table, and converted this number to square kilometres. We used

these area data as the range size data for the 154 species from which

we could collect morphological data.

4 BLANCHARD AND MOREAU
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Macroevolutionary analyses

For all macroevolutionary analyses, we used both the MCMCTree and

BEAST2-100BEST time-scaled phylogenies. We inferred ancestral

states along each phylogeny for relative spine length, relative max spine

length, body size and range size using the contMap function in phytools

v0.6 (Revell, 2012, 2013) implemented in RStudio v1.2.5033 (R Core

Team, 2018; RStudio Team, 2015). We also inferred ancestral geo-

graphic ranges using BioGeoBEARS v1.1.2 (Matzke, 2013). We uti-

lized the DEC, BAYAREALIKE and DIVALIKE models without the

jump dispersal/founder-event speciation parameter (J), given the very

large size of our three biogeographic regions (designated as three

areas in the analyses with a max range size of three areas) and con-

cerns pertaining to the ‘jump’ parameter (Ree & Sanmartín, 2018),

and selected the model with the best fit according to Akaike informa-

tion criterion (AIC).

We conducted diversification analyses using several methods. To

assess shifts in diversification independent of a priori trait informa-

tion, we used BAMM v2.5.0 and BAMMtools v2.1.7 (Rabosky, 2014;

Rabosky et al., 2014). We enabled the sampleProbsFilename option to

account for differing levels of taxon sampling across the 12 Polyrhachis

subgenera included in our phylogeny, with sampling estimates based

on current subgeneric taxonomy as determined from AntWiki

(antwiki.org; accessed September 2018) and a backbone sampling

probability of 0.986 to account for the missing 10 species from the

unsampled P. (Hirtomyrma) subgenus. For cases of inferred polyphy-

letic subgenera, we applied the sampling fraction for the subgenus to

each independent clade. We set values for the expectedNumberOf-

Shifts, lambdaInitPrior, lambdaShiftPrior and muInitPrior priors using the

setBAMMpriors function in BAMMtools, which is designed to select

appropriate priors based on features of the input dataset. With all

other settings left at the default, we ran the MCMC for 10 million

generations, sampling every 10,000 generations, and assessed conver-

gence in BAMMtools, with a burn-in of 15%, to ensure that the effec-

tive size of the estimated number of shifts and log likelihood each

exceeded 100. We then evaluated the event data using BAMMtools,

to assess the inferred average phylorate across the Polyrhachis phylog-

eny, as well as the 95% credible set of distinct shift configurations

(i.e., the set of distinct shift configurations that account for 95% of

the probability of the data).

To assess evidence for trait-based diversification, we implemented

an analysis in QuaSSE (Fitz John, 2010) in the package diversitree

v09-13 (Fitz John, 2012). For each trait, we used the starting.point.quasse

function to set starting points for each model based on parameters esti-

mated using birth-death and Brownian motion models of evolution. We

then used an analysis of variance to compare the fit of a trait-correlated

versus trait-uncorrelated model of diversification. Due to documented

type 1 error issues with the state speciation and extinction (SSE) suite of

models under some scenarios (Rabosky & Goldberg, 2015), we also used

ES-sim v1.1 (Harvey & Rabosky, 2018), which tests for correlations

between summary statistics of phylogenetic branching patterns and trait

variation at the tips of a phylogeny and is designed as an alternative to

QuaSSE. We ran 1000 simulations in ES-sim for each trait.

Finally, to test for correlations between spine length, body size,

and range size, we conducted a phylogenetic generalized least squares

(PGLS) analysis in the R package caper v1.0.1 (Orme et al., 2018). One

of our predictions was that spine length should promote, and thus be

positively correlated with, increased geographic range size, thus we

set range size as the response variable and included both spine length

(or max spine length) and body size as factors. We also tested for a cor-

relation between body size and spine length (or max spine length) to test

for potential allometric scaling between spine length and body size.

For all PGLS analyses, variables were log-transformed prior to analysis

(Mundry, 2014), and we optimized the three branch length transfor-

mations—lambda, delta and kappa – using caper’s ML setting.

RESULTS

UCE capture statistics

Our 70% taxon complete matrix includes 161 samples from 160 Poly-

rhachis species, representing approximately 23% of the hyperdiverse

genus (Bolton, 2020), and 15 outgroup Formicine taxa. The raw

sequence data consisted of a mean of 7.2 million reads per sample

with a mean length of 140 bp (Table S4). The Trinity assembly step

resulted in a mean of 98,505 contigs with a mean length of 377.7 bp

and mean coverage of 5.7X. After the finding UCE loci step, we recov-

ered a mean of 1653 UCE contigs per sample, with a mean contig

length of 865 bp and a mean coverage per UCE of 31.38X (Table S4).

The final matrix of concatenated UCE loci was 592,434 bp long and

included 1300 UCE loci alignments and 105,976 informative sites

(with 4.9% missing data, including gaps).

Phylogenomic analyses

Our PartitionFinder2 analyses, using the rclusterf algorithm, produced

a partitioning scheme with 475 subsets. The rclusterf-partitioned

dataset was favoured via AICc analysis, although the mean branch

support, tree length, mean branch length and branch length variance

were relatively similar for all partitioning schemes (Table S5), suggest-

ing minimal impacts of partitioning scheme.

The final tree topologies for our ML, BI and GT analyses were

largely consistent with each other. The ML and BI topologies were

identical to each other, with only some differences in bootstrap versus

posterior probability node support (Figures 2, S2, and S3,

Appendix S1). The GT topology was similar to that of the ML and BI

trees at the subgeneric level, with some exceptions at the species

level (Figure S4). The most unusual incongruity in the GT inference is

the placement of P. lamellidens, a well-supported member of the highly

distinct P. (Polyrhachis) subgenus. In the GT topology, this species is

placed away from the P. (Polyrhachis) subgenus and instead sister to

the entire Polyrhachis-Myrma clade, possibly due to lower locus cover-

age for this taxon (414 loci) resulting in its absence from too many

gene trees to be accurately placed in the species tree. This major

SPINES ASSOCIATED WITH LARGE RANGE SIZE IN ANTS 5
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inconsistency led us to favour the ML/BI topology, which we used for

divergence dating. The subgeneric relationships found in our ML/BI tree

topology are also broadly similar to the relationships reported in the seven

gene-based phylogeny of Mezger and Moreau (2016), with a couple nota-

ble exceptions (see Appendix S1 for more discussion on comparisons

between these two studies). Overall, the consistency of our trees across

differing phylogenetic inference methods, and similarities with Mezger

and Moreau (2016), supports the robustness of our topological inference,

with the gene-tree method producing the most divergent results.

Divergence dating in MCMCTree using our rclusterf-partitioned

RAxML starting tree reconstructed a node age for crown Polyrhachis

of 33 Ma (95% HPD: 21.16–48.73 Ma), a slightly younger age com-

pared to the previous molecular phylogenetic study of the genus that

inferred a crown age of 42 Ma (Mezger & Moreau, 2016). Importantly,

the outgroup relationships are not resolved with respect to

Polyrhachis, likely a consequence of reduced taxon sampling of the

outgroups relative to their source study (Blaimer et al., 2015), which

itself included uncertainty around the placement of Oecophylla, Geso-

myrmex and Myrmoteras. This sparse sampling likely perturbed the

inferred topology of the outgroups in our RAxML and ExaBayes infer-

ences. This circumstance could have impacted our inference of the

crown age of Polyrhachis. However, Polyrhachis is well-established as

a monophyletic genus (Blaimer et al., 2015; Mezger & Moreau, 2016;

Moreau & Bell, 2013), and our inferred age of the crown Formicinae

subfamily, 126 Ma (95% HPD: 111.5–138.76 Ma), is consistent with

the previous phylogenomic study of Formicinae (Blaimer et al., 2015)

while older than the age inferred by two family-wide phylogenetic

studies of the ants (Moreau & Bell, 2013; Nelsen et al., 2018). Fur-

thermore, divergence dating in BEAST2 reconstructed a crown node

age of 52 Ma with the 100-BEST dataset and 51 Ma with the
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F I GU R E 2 MCMCTree time-scaled phylogeny inferred with RAxML topology. Bars display geographic range size for each species, and the
ancestral state reconstruction of relative spine length is mapped along the phylogeny.
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100-RANDOM dataset, thus inferring an older (rather than younger)

age compared to the previous Polyrhachis study, while also inferring a

crown age of Formicinae of 128 Ma that is comparable to the prior

Formicinae study. It therefore does not appear that outgroup infer-

ences uniformly significantly bias our divergence dating inferences.

Diagnostic priors-only runs in MCMCTree established that our data

substantially impact both inferred node dates and estimated relative

branch lengths between subclades under the independent rates model

(Figures S5–S7) but not the correlated rates model (Figures S8–S10).

We also found significant impacts of molecular data on the posterior

distribution of ages inferred in our BEAST2 runs (Figures S11–S13).

Outgroups were pruned for subsequent analyses using our time-scaled

MCMCTree and BEAST2 phylogenies. As the inferred divergence dates

for the 100-BEST and 100-RANDOM datasets were highly similar, we

used the BEAST2-100BEST phylogeny as an older estimate of Polyrha-

chis divergence dates, and the MCMCTree phylogeny as a younger esti-

mate, for downstream macroevolutionary analyses.

Macroevolutionary analyses

Our database includes morphological trait data for 154 of the

160 Polyrhachis species in our 161-tip time-scaled phylogenies

(Table S1). In addition to outgroups, we pruned the six taxa without

morphological information as well as one of the two P. armata tips to

ensure even sampling of species included in our MCMCTree and

BEAST2 trees. These two 154-tip Polyrhachis phylogenies were used

for all macroevolutionary analyses.

Ancestral state estimation analyses demonstrate wide variation in

relative spine length, body size and range size, with multiple phylogenet-

ically independent gains and losses of trait states for all of these traits

(Figures 2 and S14–S17). Very long relative spine lengths are inferred

to have evolved independently at least five times, while very small

spines—or complete spine loss—has independently occurred at least

seven times (Figures S14 and S15). Large body size appears to have

evolved at least 10 times and small body size at least 5 times

(Figure S16). One portion of the Polyrhachis phylogeny exhibits con-

sistently small range size (species found in approximately one to three

regions), whereas the rest of the tree is more variable, including at

least three independent gains of very large range size (Figure S17).

Our BioGeoBEARS analysis selected BAYAREALIKE as the best-

fitting model (ΔAIC > 19.9 relative to both other models). As in

Mezger and Moreau (2016), a joint Oriental/Australasian origin is

inferred as the ancestral state of crown Polyrhachis, consistent with a

Southeast Asian origin of the genus (Figures S18 and S19). Relative to

our ancestral range estimation results based on three broad biogeo-

graphic categories, our finer-scale range size data reveals fairly high

evolutionary lability of range size, with sizes ranging from a small
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distribution of about 4000 km2 up to very large distribution exceeding

11 million km2 (Figures 2 and S17).

Diversification analyses, implemented using three different

methods and phylogenies inferred through two different methodo-

logical approaches, consistently found no association between diver-

sification rate and any of our traits (spine length, maximum spine

length, body size and range size). With our MCMCTree phylogeny, our

BAMM analyses produce average phylorate plots with an apparent

rate increase in the Cyrtomyrma subgenus, which is notable for a

nearly complete lack of spines, but the majority of configurations in

the 95% credible shift set (0.55 frequency) lack an inferred rate shift

in the subgenus (Figure 3). Furthermore, the single most frequent

configuration (0.39 frequency) infers zero rate shifts. In ES-sim, we

recovered no association between diversification and spine length

(p = 0.829), maximum spine length (p = 0.845), relative spine length

(p = 0.759), relative maximum spine length (p = 0.823), body

size (p = 0.454) or range size (p = 0.524) (Table S6). Similarly, our

QuaSSE analyses did not support a trait-dependent model of diversi-

fication when compared to a trait-independent model, for any trait

(p > 0.376 for all six traits; Table S6). All these results are qualita-

tively identical to the results using the BEAST2-100BEST phylogeny

(Figure S20, Table S6), with the single exception of a statistically sig-

nificant positive association between range size and diversification in

QuaSSE (p < 0.001; Table S6).

PGLS analyses revealed some evolutionary correlations between

our log-transformed traits. In particular, we found a significant posi-

tive association between spine length and range size (p = 0.025,

R2 = 0.036), while finding that body size is not associated with range
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F I GU R E 4 Phylogenetic generalized least squares (PGLS) analyses including spine length, body size and range size. Panels (a) and (b) display
results from a bivariate PGLS model including spine length as a predictor of range size, with and without zero-spine taxa included, respectively.
Point size corresponds to body size. Panels (c) and (d) display results from a bivariate PGLS model including body size as a predictor of spine length,
with and without zero-spine taxa included, respectively. Point size corresponds to range size. In panels (a) to (d), the solid trend line corresponds
to the bivariate PGLS analysis, and the dotted trend line corresponds to a bivariate standard regression conducted using the ‘lm’ function in
R. The values for all variables have been log-transformed. See Table S7 for full results from the multivariate PGLS analyses including both spine
length and body size as predictors of range size.
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size (p = 0.378) (Figure 4, Table S7). Spine length also positively scales

with body size (p < 0.001, R2 = 0.055), without clear evidence of allo-

metric scaling (Figure 4, Table S7). These results did not significantly

differ when using maximum spine length as an alternative spine metric

or with zero-spine taxa excluded, although maximum spine length was

only marginally significantly associated with range size when zero-

spine taxa were excluded (p = 0.064; Table S7). As with the diversifi-

cation analyses, these results also did not qualitatively differ from

those using the BEAST2-100BEST phylogeny (Table S7).

DISCUSSION

We reconstructed a large phylogeny of the hyperdiverse spiny ant

genus Polyrhachis using a phylogenomic UCE approach, resulting in

robust time-scaled trees inferred by two different methods that

include 160 species from 12 of the 13 recognized subgenera in the

genus. Using these phylogenies and our compiled database of spine

length, body size and geographic range size data, we found a positive

correlation between spine length and geographic range (Figures 2 and

4, Table S7). Although the R2 value is low, this result supports the

hypothesis that spines contribute to broader geographic range sizes in

Polyrhachis, potentially due to a reduction in worker loss from preda-

tion. Interestingly, our results also consistently support no association

between spine length and diversification, regardless of analysis or

phylogeny used (Figure 3, Table S6), in contrast to our expectation

that spines should promote elevated diversification rates.

While we find a positive association between defensive traits and

geographic range, some studies in plants find the reverse: defence

specialization adapted to local enemies restricts geographic range

and/or constrains range evolution (Agrawal et al., 2005; Siemens

et al., 2009). Our alternative result may arise from the fact that ant

spines should serve as quite generalized and energetically cheap

defences against most myrmecophagous predators, and consequently

do not carry the spatially constraining costs associated with specializa-

tion. Thus, similar to invasive species experiencing enemy release that

facilitates invasion into novel environments (Keane & Crawley, 2002),

long spines in Polyrhachis workers may afford escape from widespread

predators—such as frogs (Ito et al., 2016) and spiders (Blanchard

et al., 2020)—regardless of geographic location. Direct tests of a

defensive trait-geographic range size relationship are surprisingly rare,

but Luiz et al. (2013) present a similar case in tropical reef fishes,

where adult defensive traits (schooling behaviour and nocturnal activ-

ity) predicted larger geographic range size.

One potential confounding effect in such studies, including ours,

is that more conspicuous species may be disproportionately collected

relative to less conspicuous species, potentially influencing range size

comparisons. Future work in ants, as well as other taxa, should

address the role of defensive traits on geographic range size as well as

develop strategies to address collection bias. Additionally, such stud-

ies could jointly consider other factors known to impact geographic

range size, including competition (Pigot & Tobias, 2013) and dispersal

ability (Capurucho et al., 2020). It is also notable that Sarnat et al.

(2017) found that all six extant lineages that independently evolved

spines in the nearly global genus Pheidole are restricted to the Asia-

Pacific region, suggesting some unique evolutionary driver of spine

evolution in this region that is the cradle of both Polyrhachis and Phei-

dole spiny ant diversification. Given evidence demonstrating an impact

of geological history (e.g., land bridge formation: Price et al., 2022;

Winston et al., 2017) and ecological opportunity (Economo

et al., 2015; Price et al., 2014; Sarnat & Moreau, 2011) on ant evolu-

tionary history, as well as newly available global ant trait and geo-

graphic range databases (Kass et al., 2022; Parr et al., 2017), the role

of biogeographic factors on morphological trait evolution in ants

should be further explored.

The lack of a relationship between spines and diversification

within Polyrhachis is intriguing, as it contrasts with previous work

across all ants at the taxonomic scale of the genus (Blanchard &

Moreau, 2017). The discordance between these two studies could

suggest that spine evolution increased initial diversification during the

early stages of radiation in the genus, following an ‘early-burst’ model

(Losos & Mahler, 2010), but did not consistently drive diversification

across the timespan of Polyrhachis evolution and is thus not captured

using the methods in this study. It is also possible that geographic

range expansion in single species promotes increased gene flow

(Bohonak, 1999), such that more spinescent clades speciate at slower

rates than less spinescent clades. Some studies on bird evolution sup-

port this dynamic, where increased dispersal abilities suppress diversi-

fication rates (Claramunt et al., 2012; Weeks & Claramunt, 2014).

Spine expression may also carry costs that are not detectable in this

study but may negate any enhancement of diversification rate result-

ing from expanded geographic range size. Potential costs include

restriction of nesting site location (Wilson, 1959), navigational chal-

lenges (especially for individuals with very long spines traversing com-

plex microhabitats), and early-stage developmental challenges or

limitations associated with spine production. Notably, while our phy-

logenetic inference represents twice as many described species as the

previous Polyrhachis phylogeny (Mezger & Moreau, 2016), our tree

still includes only about 23% of all described taxa in the genus. Fur-

thermore, among the three diversification analyses, only BAMM was

able to incorporate variable taxonomic sampling information (runs in

QuaSSE utilizing the sampling.f function failed to converge), and even

this correction is not a substitute for real data. Recent work has also

highlighted the extent of challenges faced by such diversification

studies to infer correct diversification histories (Louca &

Pennell, 2020; Rabosky et al., 2017). Thus, although all three analyses,

which are each fundamentally different in their approach, were con-

cordant in failing to support spine-based diversification in Polyrhachis

regardless of phylogeny used, further phylogenetic sampling is neces-

sary to more robustly establish the relationship, if any, between cutic-

ular spines and diversification in the spiny ants.

Overall, our study provides a rare investigation directly assessing

the role of a defensive trait on geographic range size, and ultimately

supports the hypothesis that defensive spines are a factor in increased

range size in Polyrhachis ants. Additionally, neither spine length nor

range size expansion appears to be associated with elevated
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diversification rates, a dynamic that should be the focus of future

research. Our work adds to the growing body of evidence that defen-

sive traits—and especially spines—play a key role in the evolution of

ants and may significantly contribute to the evolutionary persistence

and global dominance of this hyperdiverse clade of insects.
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each species.

Table S2: Collection details, available voucher information and NCBI

accession numbers associated with Polyrhachis samples sequenced for

this study.
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Table S3: Calibration nodes and ages used for divergence dating ana-

lyses in MCMCTree.

Table S4: Quality control information for pre-assembly, post-assembly

and UCE selection.

Table S5: Information about partition schemes and diagnostics of

results under each scheme.

Table S6: Results from ES-sim and QuaSSE analyses.

Table S7: Results from phylogenetic generalized least squares (PGLS)

analyses including spine length and body size as predictors of range size,

and including body size and range size as predictors of body size, for

both the MCMCTree and BEAST2-100BEST phylogenies. We con-

ducted two multivariate PGLS analyses for each model—one with

zero-spine taxa included, and one with zero-spine taxa excluded.

Figure S1: Examples of spine measurements. Red lines show the path

traced using the ‘Straight Line’ or ‘Segmented Line’ tools in ImageJ.

Species (and photo credit), from top left: (a, b) P. bellicosa (Christiana

Klingenberg), (c, d) P. ypsilon (Zach Lieberman), (e, f) P. argentosa (Zach

Lieberman), (g, h) P. emmae (Will Ericson), (i, j) P. deceptor (April

Nobile), (k, l) P. epinotalis (Bradley Reynolds). From www.antweb.org

under a Creative Commons Attribution Licence. Accessed

21 December 2019.

Figure S2: Polyrhachis phylogenetic topology inferred with the

rclusterf-partitioned dataset in RAxML.

Figure S3: Polyrhachis phylogenetic topology inferred using ExaBayes.

Figure S4: ASTRAL-III topology shown alongside the RAxML topol-

ogy. Differences between the gene-tree and maximum likelihood

ingroup topologies are labelled with red boxes.

Figure S5: Time-scaled phylogeny of Polyrhachis inferred using

MCMCTree with DNA data under the independent rates model.

Figure S6: Time-scaled phylogeny of Polyrhachis inferred using

MCMCTree without DNA data (i.e., priors-only run) under the inde-

pendent rates model.

Figure S7: Mean 95% HPD values for with-data and no-data

(i.e., priors-only) MCMC runs under the independent rates model,

plotted against each other. Note that for each independent run, values

clearly deviate from the linear relationship expected if data were not

informative.

Figure S8: Time-scaled phylogeny of Polyrhachis inferred using

MCMCTree with DNA data under the correlated rates model.

Figure S9: Time-scaled phylogeny of Polyrhachis inferred using

MCMCTree without DNA data (i.e., priors-only run) under the corre-

lated rates model.

Figure S10: Mean 95% HPD values for with-data and no-data

(i.e., priors-only) MCMC runs under the correlated rates model, plot-

ted against each other. Note that for each independent run, values do

not substantially deviate from the linear relationship expected if data

were not informative.

Figure S11: Time-scaled phylogeny of Polyrhachis inferred using

BEAST2 with the 100-BEST dataset.

Figure S12: Time-scaled phylogeny of Polyrhachis inferred using

BEAST2 with the 100-RANDOM dataset.

Figure S13: Time-scaled phylogeny of Polyrhachis inferred using

BEAST2 without DNA data (priors only).

Figure S14: Ancestral state estimation for relative spine length imple-

mented using the ‘contMap’ function in phytools for (a) the

MCMCTree phylogeny, and (b) the BEAST2-100BEST phylogeny.

Figure S15: Ancestral state estimation for relative max spine length

implemented using the ‘contMap’ function in phytools for (a) the

MCMCTree phylogeny, and (b) the BEAST2-100BEST phylogeny.

Figure S16: Ancestral state estimation for body size implemented

using the ‘contMap’ function in phytools for (a) the MCMCTree phy-

logeny, and (b) the BEAST2-100BEST phylogeny.

Figure S17: Ancestral state estimation for range size implemented

using the ‘contMap’ function in phytools for (a) the MCMCTree phy-

logeny, and (b) the BEAST2-100BEST phylogeny.

Figure S18: Results from ancestral range estimation with the

MCMCTree phylogeny under the ‘BAYAREALIKE’ model implemen-

ted in BioGeoBEARS.

Figure S19: Results from ancestral range estimation with the

BEAST2-100BEST phylogeny under the ‘BAYAREALIKE’ model

implemented in BioGeoBEARS.

Figure S20: Results from a BAMM analysis of the time-scaled

BEAST2-100BEST phylogeny. (a) Mean phylorate plot. (b) 95% credi-

ble shift set (nine plots representing 0.955 frequency displayed).

Figure S21: Polyrhachis phylogeny inferred in RAxML, with current

subgeneric taxonomy displayed. Samples placed in subgenera that dif-

fer from current taxonomic designations are highlighted in red.
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